99精品在线观看-99精品在线免费观看-99精品在线视频观看-99精品这里只有精品高清视频-99九九精品国产高清自在线

x

一個故意不通過圖靈測試的人工智能

2016-03-13 17:16:13 n
點擊關注->創芯網公眾號,后臺告知EETOP論壇用戶名,獎勵200信元
人工智能很可能導致人類的永生或者滅絕,而這一切很可能在我們的有生之年發生。

上面這句話不是危言聳聽,請耐心的看完本文再發表意見。這篇翻譯稿翻譯完一共三萬五千字,我從上星期開始翻,熬了好幾個夜才翻完,因為我覺得這篇東西非常有價值。希望你們能夠耐心讀完,讀完后也許你的世界觀都會被改變。

======================

內容翻譯自http://waitbutwhy.com
原文地址:
The AI Revolution: Road to Superintelligence
The AI Revolution: Our Immortality or Extinction
轉載請保留原文鏈接和翻譯者 知乎 

@謝熊貓君
=======================

我們正站在變革的邊緣,而這次變革將和人類的出現一般意義重大 – Vernor Vinge

如果你站在這里,你會是什么感覺?

一個故意不通過圖靈測試的人工智能-1

看上去非常刺激吧?但是你要記住,當你真的站在時間的圖表中的時候,你是看不到曲線的右邊的,因為你是看不到未來的。所以你真實的感覺大概是這樣的:

一個故意不通過圖靈測試的人工智能-1

稀松平常。

-------------------------------



遙遠的未來——就在眼前

想象一下坐時間機器回到1750年的地球,那個時代沒有電,暢通通訊基本靠吼,交通主要靠動物拉著跑。你在那個時代邀請了一個叫老王的人到2015年來 玩,順便看看他對“未來”有什么感受。我們可能沒有辦法了解1750年的老王內心的感受——金屬鐵殼在寬敞的公路上飛馳,和太平洋另一頭的人聊天,看幾千 公里外正在發生進行的體育比賽,觀看一場發生于半個世紀前的演唱會,從口袋里掏出一個黑色長方形工具把眼前發生的事情記錄下來,生成一個地圖然后地圖上有 個藍點告訴你現在的位置,一邊看著地球另一邊的人的臉一邊聊天,以及其它各種各樣的黑科技。別忘了,你還沒跟他解釋互聯網、國際空間站、大型強子對撞機、 核武器以及相對論。

這時候的老王會是什么體驗?驚訝、震驚、腦洞大開這些詞都太溫順了,我覺得老王很可能直接被嚇尿了。

但是,如果老王回到了1750年,然后覺得被嚇尿是個很囧的體驗,于是他也想把別人嚇尿來滿足一下自己,那會發生什么?于是老王也回到了250年前的 1500年,邀請生活在1500年的小李去1750年玩一下。小李可能會被250年后的很多東西震驚,但是至少他不會被嚇尿。同樣是250來年的時 間,1750和2015年的差別,比1500年和1750年的差別,要大得多了。1500年的小李可能能學到很多神奇的物理知識,可能會驚訝于歐洲的帝國 主義旅程,甚至對于世界地圖的認知也會大大的改變,但是1500年的小李,看到1750年的交通、通訊等等,并不會被嚇尿。

所以說,對于1750年的老王來說,要把人嚇尿,他需要回到更古老的過去——比如回到公元前12000年,第一次農業革命之前。那個時候還沒有城市,也還 沒有文明。一個來自狩獵采集時代的人類,只是當時眾多物種中的一個罷了,來自那個時代的小趙看到1750年龐大的人類帝國,可以航行于海洋上的巨艦,居住 在“室內”,無數的收藏品,神奇的知識和發現——他很有可能被嚇尿。

小趙被嚇尿后如果也想做同樣的事情呢?如果他會到公元前24000年,找到那個時代的小錢,然后給他展示公元前12000年的生活會怎樣呢。小錢大概會覺 得小趙是吃飽了沒事干——“這不跟我的生活差不多么,呵呵”。小趙如果要把人嚇尿,可能要回到十萬年前或者更久,然后用人類對火和語言的掌控來把對方嚇 尿。

所以,一個人去到未來,并且被嚇尿,他們需要滿足一個“嚇尿單位”。滿足嚇尿單位所需的年代間隔是不一樣的。在狩獵采集時代滿足一個嚇尿單位需要超過十萬年,而工業革命后一個嚇尿單位只要兩百多年就能滿足。

未來學家Ray Kurzweil把這種人類的加速發展稱作加速回報定律(Law of Accelerating Returns)。之所以會發生這種規律,是因為一個更加發達的社會,能夠繼續發展的能力也更強,發展的速度也更快——這本就是更加發達的一個標準。19世紀的人們比15世紀的人們懂得多得多,所以19世紀的人發展起來的速度自然比15世紀的人更快。

即使放到更小的時間規模上,這個定律依然有效。著名電影《回到未來》中,生活在1985年的主角回到了1955年。當主角回到1955年的時候,他被電視剛出現時的新穎、便宜的物價、沒人喜歡電吉他、俚語的不同而震驚。

但是如果這部電影發生在2015年,回到30年前的主角的震驚要比這大得多。一個2000年左右出生的人,回到一個沒有個人電腦、互聯網、手機的1985年,會比從1985年回到1955年的主角看到更大的區別。

這同樣是因為加速回報定律。1985年-2015年的平均發展速度,要比1955年-1985年的平均發展速度要快,因為1985年的世界比1955年的更發達,起點更高,所以過去30年的變化要大過之前30年的變化。

進步越來越大,發生的越來越快,也就是說我們的未來會很有趣對吧?

未來學家Kurzweil認為整個20世紀100年的進步,按照2000年的速度只要20年就能達成——2000年的發展速度是20世紀平均發展速度的5 倍。他認為2000年開始只要花14年就能達成整個20世紀一百年的進步,而之后2014年開始只要花7年(2021年),就能達到又一個20世紀一百年 的進步。幾十年之后,我們每年都能達成好幾次相當于整個20世紀的發展,再往后,說不定每個月都能達成一次。按照加速回報定,Kurzweil認為人類在21世紀的進步將是20世紀的1000

如果Kurzweil等人的想法是正確的,那2030年的世界可能就能把我們嚇尿了——下一個嚇尿單位可能只需要十幾年,而2050年的世界會變得面目全非。

一個故意不通過圖靈測試的人工智能-1

你可能覺得2050年的世界會變得面目全非這句話很可笑,但是這不是科幻,而是比你我聰明很多的科學家們相信的,而且從歷史來看,也是邏輯上可以預測的。

那么為什么你會覺得“2050年的世界會變得面目全非” 這句話很可笑呢?有三個原因讓你質疑對于未來的預測:

1. 我們對于歷史的思考是線性的。當 我們考慮未來35年的變化時,我們參照的是過去35年發生的事情。當我們考慮21世紀能產生的變化的時候,我們參考的是20世紀發生的變化。這就好像 1750年的老王覺得1500年的小李在1750年能被嚇尿一樣。線性思考是本能的,但是但是考慮未來的時候我們應該指數地思考。一個聰明人不會把過去 35年的發展作為未來35年的參考,而是會看到當下的發展速度,這樣預測的會更準確一點。當然這樣還是不夠準確,想要更準確,你要想象發展的速度會越來越 快。
一個故意不通過圖靈測試的人工智能-1

2. 近期的歷史很可能對人產生誤導。首先,即使是坡度很高的指數曲線,只要你截取的部分夠短,看起來也是很線性的,就好像你截取圓周的很小一塊,看上去就是和直線差不多。其次,指數增長不是平滑統一的,發展常常遵循S曲線。
一個故意不通過圖靈測試的人工智能-1


S曲線發生在新范式傳遍世界的時候,S曲線分三部分

- 慢速增長(指數增長初期)

- 快速增長(指數增長的快速增長期)

- 隨著新范式的成熟而出現的平緩期

如果你只看近期的歷史,你很可能看到的是S曲線的某一部分,而這部分可能不能說明發展究竟有多快速。1995-2007年是互聯網爆炸發展的時候,微軟、 谷歌、臉書進入了公眾視野,伴隨著的是社交網絡、手機的出現和普及、智能手機的出現和普及,這一段時間就是S曲線的快速增長期。2008-2015年發展 沒那么迅速,至少在技術領域是這樣的。如果按照過去幾年的發展速度來估計當下的發展速度,可能會錯得離譜,因為很有可能下一個快速增長期正在萌芽。

3. 個人經驗使得我們對于未來預期過于死板。我們通過自身的經驗來產生世界觀,而經驗把發展的速度烙印在了我們腦中——“發展就是這么個速度 的。”我們還會受限于自己的想象力,因為想象力通過過去的經驗來組成對未來的預測——但是我們知道的東西是不足以幫助我們預測未來的。當我們聽到一個和我 們經驗相違背的對于未來的預測時,我們就會覺得這個預測偏了。如果我現在跟你說你可以活到150歲,250歲,甚至會永生,你是不是覺得我在扯淡——“自 古以來,所有人都是會死的。”是的,過去從來沒有人永生過,但是飛機發明之前也沒有人坐過飛機呀。

接下來的內容,你可能一邊讀一邊心里“呵呵”,而且這些內容可能真的是錯的。但是如果我們是真的從歷史規律來進行邏輯思考的,我們的結論就應該是未來的幾十年將發生比我們預期的多得多得多得多的變化。同 樣的邏輯也表明,如果人類這個地球上最發達的物種能夠越走越快,總有一天,他們會邁出徹底改變“人類是什么”這一觀點的一大步,就好像自然進化不不斷朝著 智能邁步,并且最終邁出一大步產生了人類,從而完全改變了其它所有生物的命運。如果你留心一下近來的科技進步的話,你會發現,到處都暗示著我們對于生命的 認知將要被接下來的發展而徹底改變。




_______________

通往超級智能之路

人工智能是什么?

如果你一直以來把人工智能AI)當做科幻小說,但是近來卻不但聽到很多正經人嚴肅的討論這個問題,你可能也會困惑。這種困惑是有原因的:

1.我們總是把人工智能和電影想到一起。星球大戰、終結者、2001:太空漫游等等。電影是虛構的,那些電影角色也是虛構的,所以我們總是覺得人工智能缺乏真實感。

2.人工智能是個很寬泛的話題。從手機上的計算器到無人駕駛汽車,到未來可能改變世界的重大變革,人工智能可以用來描述很多東西,所以人們會有疑惑。

3.我們日常生活中已經每天都在使用人工智能,只是我們沒意識到而已。John McCarthy,在1956年最早使用了人工智能(Artificial Intelligence)這個詞。他總是抱怨“一旦一樣東西用人工智能實現了,人們就不再叫它人工智能了?!?/p> 因為這種效應,所以人工智能聽起來總讓人覺得是未來的神秘存在,而不是身邊已經存在的現實。同時,這種效應也讓人們覺得人工智能是一個從未被實現過的流行 理念。Kurzweil提到經常有人說人工智能在80年代就被遺棄了,這種說法就好像“互聯網已經在21世紀初互聯網泡沫爆炸時死去了”一般滑稽。





所以,讓我們從頭開始。


首先,不要一提到人工智能就想著機器人。機器人只是人工智能的容器,機器人有時候是人形,有時候不是,但是人工智能自身只是機器人體內的電 腦。人工智能是大腦的話,機器人就是身體——而且這個身體不一定是必需的。比如說Siri背后的軟件和數據是人工智能,Siri說話的聲音是這個人工智能 的人格化體現,但是Siri本身并沒有機器人這個組成部分。

其次,你可能聽過“奇點”或者“技術奇點”這種說法。這種說法在數學上用來描述類似漸進的情況,這種情況下通常的規律就不適用了。這種說法同樣被用在物理 上來描述無限小的高密度黑洞,同樣是通常的規律不適用的情況。Kurzweil則把奇點定義為加速回報定律達到了極限,技術進步以近乎無限的速度發展,而 奇點之后我們將在一個完全不同的世界生活的。但是當下的很多思考人工智能的人已經不再用奇點這個說法了,而且這種說法很容易把人弄混,所以本文也盡量少 用。

最后,人工智能的概念很寬,所以人工智能也分很多種,我們按照人工智能的實力將其分成三大類。

人工智能Artificial Narrow Intelligence (ANI): 人工智能是擅長于單個方面的人工智能。比如有能戰勝象棋世界冠軍的人工智能,但是它只會下象棋,你要問它怎樣更好地在硬盤上儲存數據,它就不知道怎么回答你了。

人工智能Artificial General Intelligence (AGI): 人類級別的人工智能。強人工智能是指在各方面都能和人類比肩的人工智能,人類能干的腦力活它都能干。創造強人工智能比創造弱人工智能難得多,我們現在還做不到。Linda Gottfredson教授把智能定義為“一種寬泛的心理能力,能夠進行思考、計劃、解決問題、抽象思維、理解復雜理念、快速學習和從經驗中學習等操作?!睆?a href="http://www.xebio.com.cn/ai" target="_blank" class="keylink">人工智能在進行這些操作時應該和人類一樣得心應手。

人工智能Artificial Superintelligence (ASI): 牛津哲學家,知名人工智能思想家Nick Bostrom把超級智能定義為“在幾乎所有領域都比最聰明的人類大腦都聰明很多,包括科學創新、通識和社交技能?!背?a href="http://www.xebio.com.cn/ai" target="_blank" class="keylink">人工智能可以是各方面都比人類強一 點,也可以是各方面都比人類強萬億倍的。超人工智能也正是為什么人工智能這個話題這么火熱的緣故,同樣也是為什么永生和滅絕這兩個詞會在本文中多次出現。


現在,人類已經掌握了弱人工智能。其實弱人工智能無處不在,人工智能革命是從弱人工智能,通過強人工智能,最終到達超人工智能的旅途。這段旅途中人類可能會生還下來,可能不會,但是無論如何,世界將變得完全不一樣。

讓我們來看看這個領域的思想家對于這個旅途是怎么看的,以及為什么人工智能革命可能比你想的要近得多。


我們現在的位置——充滿了弱人工智能的世界

人工智能是在特定領域等同或者超過人類智能/效率的機器智能,一些常見的例子:

  • 汽車上有很多的弱人工智能系統,從控制防抱死系統的電腦,到控制汽油注入參數的電腦。谷歌正在測試的無人駕駛車,就包括了很多弱人工智能,這些弱人工智能能夠感知周圍環境并作出反應。
  • 你的手機也充滿了弱人工智能系統。當你用地圖軟件導航,接受音樂電臺推薦,查詢明天的天氣,和Siri聊天,以及其它很多很多應用,其實都是弱人工智能。
  • 垃圾郵件過濾器是一種經典的弱人工智能——它一開始就加載了很多識別垃圾郵件的智能,并且它會學習并且根據你的使用而獲得經驗。智能室溫調節也是一樣,它能根據你的日常習慣來智能調節。
  • 你在上網時候出現的各種其它電商網站的產品推薦,還有社交網站的好友推薦,這些都是弱人工智能的組成的,弱人工智能聯網互相溝通,利用你的信息來進行推薦。網購時出現的“買這個商品的人還購買了”推薦,其實就是收集數百萬用戶行為然后產生信息來賣東西給你的弱人工智能。
  • 谷歌翻譯也是一種經典的人工智能——非常擅長單個領域。聲音識別也是一種。很多軟件利用這兩種智能的合作,使得你能對著手機說中文,手機直接給你翻譯成英文。
  • 當飛機著陸時候,不是一個人類決定飛機該去那個登機口接駁。就好像你在網上買票時票據不是一個人類決定的。
  • 世界最強的跳棋、象棋、拼字棋、雙陸棋和黑白棋選手都是弱人工智能。
  • 谷歌搜索是一個巨大的弱人工智能,背后是非常復雜的排序方法和內容檢索。社交網絡的新鮮事同樣是這樣。
  • 這些還只是消費級產品的例子。軍事、制造、金融(高頻算法交易占到了美國股票交易的一半)等領域廣泛運用各種復雜的弱人工智能。專業系統也有,比如幫助醫 生診斷疾病的系統,還有著名的IBM的華生,儲存了大量事實數據,還能理解主持人的提問,在競猜節目中能夠戰勝最厲害的參賽者。

現在的弱人工智能系統并不嚇人。最糟糕的情況,無非是代碼沒寫好,程序出故障,造成了單獨的災難,比如造成停電、核電站故障、金融市場崩盤等等。

雖然現在的弱人工智能沒有威脅我們生存的能力,我們還是要懷著警惕的觀點看待正在變得更加龐大和復雜的弱人工智能的生態。每一個弱人工智能的創新,都在給通往強人工智能和超人工智能的旅途添磚加瓦。用Aaron Saenz的觀點,現在的弱人工智能,就是地球早期軟泥中的氨基酸——沒有動靜的物質,突然之間就組成了生命。



人工智能到強人工智能之路

為什么這條路很難走

只有明白創造一個人類智能水平的電腦是多么不容易,才能讓你真的理解人類的智能是多么不可思議。造摩天大樓、把人送入太空、明白宇宙大爆炸的細節——這些都比理解人類的大腦,并且創造個類似的東西要簡單太多了。至今為止,人類的大腦是我們所知宇宙中最復雜的東西。

而且創造強人工智能的難處,并不是你本能認為的那些。

造一個能在瞬間算出十位數乘法的計算機——非常簡單

造一個能分辨出一個動物是貓還是狗的計算機——極端困難

造一個能戰勝世界象棋冠軍的電腦——早就成功了

造一個能夠讀懂六歲小朋友的圖片書中的文字,并且了解那些詞匯意思的電腦——谷歌花了幾十億美元在做,還沒做出來。

一些我們覺得困難的事情——微積分、金融市場策略、翻譯等,對于電腦來說都太簡單了

我們覺得容易的事情——視覺、動態、移動、直覺——對電腦來說太TM的難了。


用計算機科學家Donald Knuth的說法,人工智能已經在幾乎所有需要思考的領域超過了人類,但是在那些人類和其它動物不需要思考就能完成的事情上,還差得很遠。”

讀者應該能很快意識到,那些對我們來說很簡單的事情,其實是很復雜的,它們看上去很簡單,因為它們已經在動物進化的過程中經歷了幾億年的優化了。當你舉手 拿一件東西的時候,你肩膀、手肘、手腕里的肌肉、肌腱和骨頭,瞬間就進行了一組復雜的物理運作,這一切還配合著你的眼睛的運作,使得你的手能都在三維空間 中進行直線運作。對你來說這一切輕而易舉,因為在你腦中負責處理這些的“軟件”已經很完美了。同樣的,軟件很難識別網站的驗證碼,不是因為軟件太蠢,恰恰 相反,是因為能夠讀懂驗證碼是件碉堡了的事情。

同樣的,大數相乘、下棋等等,對于生物來說是很新的技能,我們還沒有幾億年的世界來進化這些能力,所以電腦很輕易的就擊敗了我們。試想一下,如果讓你寫一個程序,是一個能做大數相乘的程序容易寫,還是能夠識別千千萬萬種字體和筆跡下書寫的英文字母的程序難寫?

比如看著下面這個圖的時候,你和電腦都能識別出這是一個由兩種顏色的小長方形組成的一個大長方形。

一個故意不通過圖靈測試的人工智能-1

你和電腦打了個平手。接著我們把途中的黑色部分去除:

一個故意不通過圖靈測試的人工智能-1

你可以輕易的描述圖形中透明或不透明的圓柱和3D圖形,但是電腦就看不出來了。電腦會描述出2D的陰影細節,但是人腦卻能夠把這些陰影所展現的深度、陰影混合、房屋燈光解讀出來。

再看下面這張圖,電腦看到的是黑白灰,我們看到的卻是一塊全黑的石頭

一個故意不通過圖靈測試的人工智能-1

而且,我們到現在談的還是靜態不變的信息。要想達到人類級別的智能,電腦必須要理解更高深的東西,比如微小的臉部表情變化,開心、放松、滿足、滿意、高興這些類似情緒間的區別,以及為什么《布達佩斯大飯店》是好電影,而《富春山居圖》是爛電影。

想想就很難吧?

我們要怎樣才能達到這樣的水平呢?

通往強人工智能的第一步:增加電腦處理速度

要達到強人工智能,肯定要滿足的就是電腦硬件的運算能力。如果一個人工智能要像人腦一般聰明,它至少要能達到人腦的運算能力。

用來描述運算能力的單位叫作cps(calculations per second,每秒計算次數),要計算人腦的cps只要了解人腦中所有結構的最高cps,然后加起來就行了。

Kurzweil把對于一個結構的最大cps的專業估算,然后考慮這個結構占整個大腦的重量,做乘法,來得出人腦的cps。聽起來不太靠譜,但是Kurzweil用了對于不同大腦區域的專業估算值,得出的最終結果都非常類似,是10^16 cps,也就是1億億次計算每秒。

現在最快的超級計算機,中國的天河二號,其實已經超過這個運算力了,天河每秒能進行3.4億億。當然,天河二號占地720平方米,耗電2400萬瓦,耗費了3.9億美元建造。廣泛應用就不提了,即使是大部分商業或者工業運用也是很貴的。

Kurzweil認為考慮電腦的發展程度的標桿是看1000美元能買到多少cps,當1000美元能買到人腦級別的1億億運算能力的時候,強人工智能可能就是生活的一部分了。

 

摩爾定律認為全世界的電腦運算能力每兩年就翻一倍,這一定律有歷史數據所支持,這同樣表明電腦硬件的發展和人類發展一樣是指數級別的。我們用這個定律來衡量1000美元什么時候能買到1億億cps?,F在1000美元能買到10萬億cps,和摩爾定律的歷史預測相符合。

一個故意不通過圖靈測試的人工智能-1

也就是說現在1000美元能買到的電腦已經強過了老鼠,并且達到了人腦千分之一的水平。聽起來還是弱爆了,但是,讓我們考慮一下,1985年的時候,同樣 的錢只能買到人腦萬億分之一的cps,1995年變成了十億分之一,2005年是百萬分之一,而2015年已經是千分之一了。按照這個速度,我們到關鍵詞:

  • EETOP 官方微信

  • 創芯大講堂 在線教育

  • 半導體創芯網 快訊

全部評論

主站蜘蛛池模板: 99久久国产综合精品麻豆| 中国一级特黄毛片| 精品亚洲一区二区三区在线播放| 久久久久99| 色久激情| 国产精品人人视频| 国产色综合一区二区三区| 亚洲区在线播放| 日本人一级大毛片| 免费va国产高清不卡大片| 看一级黄色大片| 国产原创中文字幕| 亚洲六月婷婷| 久久涩精品| 成人永久福利免费观看| 国产色a| 91国偷自产一区二区三区蜜臀| 欧美在线一区二区三区不卡| 99视频在线国产| 日韩经典在线| 青青青爽国产在线视频| 草逼视频免费观看| 婷婷丁香色综合狠狠色| 九九99re在线视频精品免费| 欧洲在线观看在线视频吗| 97在线视| 日本欧美大码aⅴ在线播放| 好看的一级毛片| 国产亚洲精品一区二区久久| 韩国中文字幕在线观看| 国产亚洲欧美在线观看的| 麻豆网站在线播放| 亚洲精品乱码国产精品乱码| 一级aaa毛片| 日韩a无吗一区二区三区| 成人免费福利网站在线看| 国产三级欧美| 狠狠狠色丁香婷婷综合久久五月 | 久久国产精品1区2区3区网页| 亚洲视频综合网| 99久久久久国产|